
repurpose Documentation
Release 0.8

Wolfgang Preimesberger

Sep 06, 2023

Contents

1 Citation 3

2 Installation 5

3 Modules 7

4 Alternatives 9

5 Contribute 11
5.1 Development setup . 11
5.2 Guidelines . 11

6 Note 13

7 ts2img 15
7.1 Introduction . 15
7.2 Possible steps involved in the conversion . 15
7.3 Solution . 16

8 resample 21
8.1 Spatial Resampling . 21
8.2 Contents . 21
8.3 Indices and tables . 31

Python Module Index 33

Index 35

i

ii

repurpose Documentation, Release 0.8

This package provides routines for the conversion of image formats to time series and vice versa. It is part of the poets
project and works best with the readers and writers supported there. The main use case is for data that is sampled
irregularly in space or time. If you have data that is sampled in regular intervals then there are alternatives to this
package which might be better for your use case. See Alternatives for more detail.

The readers and writers have to conform to the API specifications of the base classes defined in pygeobase to work
without adpation.

Contents 1

https://travis-ci.org/TUW-GEO/repurpose
https://coveralls.io/github/TUW-GEO/repurpose?branch=master
http://badge.fury.io/py/repurpose
http://repurpose.readthedocs.org/
http://tuw-geo.github.io/poets/
http://tuw-geo.github.io/poets/
https://github.com/TUW-GEO/pygeobase

repurpose Documentation, Release 0.8

2 Contents

CHAPTER 1

Citation

If you use the software in a publication then please cite it using the Zenodo DOI. Be aware that this badge links to the
latest package version.

Please select your specific version at https://doi.org/10.5281/zenodo.593577 to get the DOI of that version. You should
normally always use the DOI for the specific version of your record in citations. This is to ensure that other researchers
can access the exact research artefact you used for reproducibility.

You can find additional information regarding DOI versioning at http://help.zenodo.org/#versioning

3

https://doi.org/10.5281/zenodo.593577
https://doi.org/10.5281/zenodo.593577
http://help.zenodo.org/#versioning

repurpose Documentation, Release 0.8

4 Chapter 1. Citation

CHAPTER 2

Installation

This package should be installable through pip:

pip install repurpose

5

repurpose Documentation, Release 0.8

6 Chapter 2. Installation

CHAPTER 3

Modules

It includes two main modules:

• img2ts for image/swath to time series conversion, including support for spatial resampling.

• ts2img for time series to image conversion, including support for temporal resampling. This module is very
experimental at the moment.

• resample for spatial resampling of (regular or irregular) gridded data to different resolutions.

7

repurpose Documentation, Release 0.8

8 Chapter 3. Modules

CHAPTER 4

Alternatives

If you have data that can be represented as a 3D datacube then these projects might be better suited to your needs.

• PyReshaper is a package that works with NetCDF input and output and converts time slices into a time series
representation.

• Climate Data Operators (CDO) can work with several input formats, stack them and change the chunking to
allow time series optimized access. It assumes regular sampling in space and time as far as we know.

• netCDF Operators (NCO) are similar to CDO with a stronger focus on netCDF.

9

https://github.com/NCAR/PyReshaper
https://code.zmaw.de/projects/cdo/embedded/index.html
http://nco.sourceforge.net/#Definition

repurpose Documentation, Release 0.8

10 Chapter 4. Alternatives

CHAPTER 5

Contribute

We are happy if you want to contribute. Please raise an issue explaining what is missing or if you find a bug. We will
also gladly accept pull requests against our master branch for new features or bug fixes.

5.1 Development setup

For Development we recommend a conda environment

5.2 Guidelines

If you want to contribute please follow these steps:

• Fork the repurpose repository to your account

• make a new feature branch from the repurpose master branch

• Add your feature

• Please include tests for your contributions in one of the test directories. We use py.test so a simple function
called test_my_feature is enough

• submit a pull request to our master branch

11

repurpose Documentation, Release 0.8

12 Chapter 5. Contribute

CHAPTER 6

Note

This project has been set up using PyScaffold 2.4.4. For details and usage information on PyScaffold see http://
pyscaffold.readthedocs.org/.

13

http://pyscaffold.readthedocs.org/
http://pyscaffold.readthedocs.org/

repurpose Documentation, Release 0.8

14 Chapter 6. Note

CHAPTER 7

ts2img

7.1 Introduction

Conversion of time series data to images (ts2img) is a general problem that we have to deal with often for all kinds of
datasets. Although most of the external datasets we use come in image format most of them are converted into a time
series format for analysis. This is fairly straightforward for image stacks but gets more complicated for orbit data.

Orbit data mostly comes as several data values accompanied by latitude, longitude information and must often be
resampled to fit on a grid that lends itself for time series analysis. A more or less general solution for this already
exists in the img2ts module.

7.2 Possible steps involved in the conversion

The steps that a ts2img program might have to perform are:

1. Read time series in a geographic region - constrained by memory

2. Aggregate time series in time

• methods for doing this aggregation can vary for each dataset so the method is best specified by the user

• resolution in time has to be chosen and is probably also best specified by the user

• after aggregation every point in time and in space must have a value which can of course be NaN

• time series might have to be split into separate images during conversion, e.g. ASCAT time series are
routinely split into images for ascending and descending satellite overpasses. This means that we can not
assume that the output dataset has the same number or names of variables as the input dataset.

3. Put the now uniform time series of equal length into a 2D array per variable

4. A resampling step could be performed here but since only a part of the dataset is available edge cases would not
be resolved correctly. A better solution would be to develop a good resampling tool which might already exist
in pyresample and pytesmo functions that use it.

5. write this data into a file

15

repurpose Documentation, Release 0.8

• this can be a netCDF file with dimensions of the grid into which the data is written

• this could be any other file format, the interface to this format just has to make sure that in the end a
consistent image dataset is built out of the parts that are written.

7.3 Solution

The chosen first solution uses netCDF as an output format. The output will be a stack of images in netCDF format.
This format can easily be converted into substacks or single images if that is needed for a certain user or project.

The chosen solution will not do resampling since this is better and easier done using the whole converted dataset. This
also means that if the input dataset is e.g. a dataset defined over land only then the resulting “image” will also not
contain land points. I think it is best to let this be decided by the input dataset.

The output of the resulting netCDF can have one of two possible “shapes”:

• 2D variables with time on one axis and gpi on the other. This is kind of how SWI time series are stored already.

• 3D variables with latitude, longitude and time as the three dimensions.

The decision of which it will be is dependent on the grid on which the input data is stored. If the grid has a 2D shape
then the 3D solution will be chosen. If the input grid has only a 1D shape then only the 2D solution is possible.

7.3.1 Time Series aggregation

The chosen solution will use a custom function for each dataset to perform the aggregation if necessary. A simple ex-
ample of a function that gets a time time series and aggregates it to a monthly time series could look like agg_tsmonthly

Simple example of a aggregation function

def agg_tsmonthly(ts, **kwargs):
"""
Parameters

ts : pandas.DataFrame

time series of a point
kwargs : dict

any additional keyword arguments that are given to the ts2img object
during initialization

Returns

ts_agg : pandas.DataFrame

aggregated time series, they all must have the same length
otherwise it can not work
each column of this DataFrame will be a layer in the image

"""
very simple example
aggregate to monthly timestamp
should also make sure that the output has a certain length
return ts.asfreq("M")

7.3.2 Time series iteration

The function agg_tsmonthly will be called for every time series in the input dataset. The input dataset must have
a iter_ts iterator that iterates over the grid points in a sensible order.

16 Chapter 7. ts2img

repurpose Documentation, Release 0.8

7.3.3 Interface to the netCDF writer

The netCDF writer will be initialized outside the ts2img class with a filename and other attributes it needs. So the
ts2img class only gets a writer object. This writer object already knows about the start and end date of the time series
as well as the target grid and has initialized the correct dimensions in the netCDF file. This object must have a method
write_ts which takes a array of gpi’s and a 2D array containing the time series for these gpis. This should be
enough to write the gpi’s into the correct position of the netCDF file.

This approach should also work if another output format is supposed to be used.

7.3.4 Implementation of the main ts2img class

The ts2img class will automatically use a the function given in agg_ts2img if no custom agg_ts2img function is
provided. If the tsreader implements a method called agg_ts2img this function will be used instead.

class Ts2Img(object):

"""
Takes a time series dataset and converts it
into an image dataset.
A custom aggregate function should be given otherwise
a daily mean will be used

Parameters

tsreader: object

object that implements a iter_ts method which iterates over
pandas time series and has a grid attribute that is a pytesmo
BasicGrid or CellGrid

imgwriter: object
writer object that implements a write_ts method that takes
a list of grid point indices and a 2D array containing the time series data

agg_func: function
function that takes a pandas DataFrame and returns
an aggregated pandas DataFrame

ts_buffer: int
how many time series to read before writing to disk,
constrained by the working memory the process should use.

"""

def __init__(self, tsreader, imgwriter,
agg_func=None,
ts_buffer=1000):

self.agg_func = agg_func
if self.agg_func is None:

try:
self.agg_func = tsreader.agg_ts2img

except AttributeError:
self.agg_func = agg_tsmonthly

self.tsreader = tsreader
self.imgwriter = imgwriter
self.ts_buffer = ts_buffer

def calc(self, **tsaggkw):

(continues on next page)

7.3. Solution 17

repurpose Documentation, Release 0.8

(continued from previous page)

"""
does the conversion from time series to images
"""
for gpis, ts in self.tsbulk(**tsaggkw):

self.imgwriter.write_ts(gpis, ts)

def tsbulk(self, gpis=None, **tsaggkw):
"""
iterator over gpi and time series arrays of size self.ts_buffer

Parameters

gpis: iterable, optional

if given these gpis will be used, can be practical
if the gpis are managed by an external class e.g. for parallel
processing

tsaggkw: dict
Keywords to give to the time series aggregation function

Returns

gpi_array: numpy.array

numpy array of gpis in this batch
ts_bulk: dict of numpy arrays

for each variable one numpy array of shape
(len(gpi_array), len(ts_aggregated))

"""
have to use the grid iteration as long as iter_ts only returns
data frame and no time series object including relevant metadata
of the time series
i = 0
gpi_bulk = []
ts_bulk = {}
ts_index = None
if gpis is None:

gpis, _, _, _ = self.tsreader.grid.grid_points()
for gpi in gpis:

gpi_bulk.append(gpi)
ts = self.tsreader.read_ts(gpi)
ts_agg = self.agg_func(ts, **tsaggkw)
for column in ts_agg.columns:

try:
ts_bulk[column].append(ts_agg[column].values)

except KeyError:
ts_bulk[column] = []
ts_bulk[column].append(ts_agg[column].values)

if ts_index is None:
ts_index = ts_agg.index

i += 1
if i >= self.ts_buffer:

for key in ts_bulk:
ts_bulk[key] = np.vstack(ts_bulk[key])

gpi_array = np.hstack(gpi_bulk)
yield gpi_array, ts_bulk

(continues on next page)

18 Chapter 7. ts2img

repurpose Documentation, Release 0.8

(continued from previous page)

ts_bulk = {}
gpi_bulk = []
i = 0

if i > 0:
for key in ts_bulk:

ts_bulk[key] = np.vstack(ts_bulk[key])
gpi_array = np.hstack(gpi_bulk)
yield gpi_array, ts_bulk

7.3. Solution 19

repurpose Documentation, Release 0.8

20 Chapter 7. ts2img

CHAPTER 8

resample

8.1 Spatial Resampling

The resample module contains functions to convert gridded data to different spatial resolutions.

8.2 Contents

8.2.1 ts2img

Introduction

Conversion of time series data to images (ts2img) is a general problem that we have to deal with often for all kinds of
datasets. Although most of the external datasets we use come in image format most of them are converted into a time
series format for analysis. This is fairly straightforward for image stacks but gets more complicated for orbit data.

Orbit data mostly comes as several data values accompanied by latitude, longitude information and must often be
resampled to fit on a grid that lends itself for time series analysis. A more or less general solution for this already
exists in the img2ts module.

Possible steps involved in the conversion

The steps that a ts2img program might have to perform are:

1. Read time series in a geographic region - constrained by memory

2. Aggregate time series in time

• methods for doing this aggregation can vary for each dataset so the method is best specified by the user

• resolution in time has to be chosen and is probably also best specified by the user

• after aggregation every point in time and in space must have a value which can of course be NaN

21

repurpose Documentation, Release 0.8

• time series might have to be split into separate images during conversion, e.g. ASCAT time series are
routinely split into images for ascending and descending satellite overpasses. This means that we can not
assume that the output dataset has the same number or names of variables as the input dataset.

3. Put the now uniform time series of equal length into a 2D array per variable

4. A resampling step could be performed here but since only a part of the dataset is available edge cases would not
be resolved correctly. A better solution would be to develop a good resampling tool which might already exist
in pyresample and pytesmo functions that use it.

5. write this data into a file

• this can be a netCDF file with dimensions of the grid into which the data is written

• this could be any other file format, the interface to this format just has to make sure that in the end a
consistent image dataset is built out of the parts that are written.

Solution

The chosen first solution uses netCDF as an output format. The output will be a stack of images in netCDF format.
This format can easily be converted into substacks or single images if that is needed for a certain user or project.

The chosen solution will not do resampling since this is better and easier done using the whole converted dataset. This
also means that if the input dataset is e.g. a dataset defined over land only then the resulting “image” will also not
contain land points. I think it is best to let this be decided by the input dataset.

The output of the resulting netCDF can have one of two possible “shapes”:

• 2D variables with time on one axis and gpi on the other. This is kind of how SWI time series are stored already.

• 3D variables with latitude, longitude and time as the three dimensions.

The decision of which it will be is dependent on the grid on which the input data is stored. If the grid has a 2D shape
then the 3D solution will be chosen. If the input grid has only a 1D shape then only the 2D solution is possible.

Time Series aggregation

The chosen solution will use a custom function for each dataset to perform the aggregation if necessary. A simple ex-
ample of a function that gets a time time series and aggregates it to a monthly time series could look like agg_tsmonthly

Simple example of a aggregation function

def agg_tsmonthly(ts, **kwargs):
"""
Parameters

ts : pandas.DataFrame

time series of a point
kwargs : dict

any additional keyword arguments that are given to the ts2img object
during initialization

Returns

ts_agg : pandas.DataFrame

aggregated time series, they all must have the same length
otherwise it can not work
each column of this DataFrame will be a layer in the image

(continues on next page)

22 Chapter 8. resample

repurpose Documentation, Release 0.8

(continued from previous page)

"""
very simple example
aggregate to monthly timestamp
should also make sure that the output has a certain length
return ts.asfreq("M")

Time series iteration

The function agg_tsmonthly will be called for every time series in the input dataset. The input dataset must have
a iter_ts iterator that iterates over the grid points in a sensible order.

Interface to the netCDF writer

The netCDF writer will be initialized outside the ts2img class with a filename and other attributes it needs. So the
ts2img class only gets a writer object. This writer object already knows about the start and end date of the time series
as well as the target grid and has initialized the correct dimensions in the netCDF file. This object must have a method
write_ts which takes a array of gpi’s and a 2D array containing the time series for these gpis. This should be
enough to write the gpi’s into the correct position of the netCDF file.

This approach should also work if another output format is supposed to be used.

Implementation of the main ts2img class

The ts2img class will automatically use a the function given in agg_ts2img if no custom agg_ts2img function is
provided. If the tsreader implements a method called agg_ts2img this function will be used instead.

class Ts2Img(object):

"""
Takes a time series dataset and converts it
into an image dataset.
A custom aggregate function should be given otherwise
a daily mean will be used

Parameters

tsreader: object

object that implements a iter_ts method which iterates over
pandas time series and has a grid attribute that is a pytesmo
BasicGrid or CellGrid

imgwriter: object
writer object that implements a write_ts method that takes
a list of grid point indices and a 2D array containing the time series data

agg_func: function
function that takes a pandas DataFrame and returns
an aggregated pandas DataFrame

ts_buffer: int
how many time series to read before writing to disk,
constrained by the working memory the process should use.

"""

(continues on next page)

8.2. Contents 23

repurpose Documentation, Release 0.8

(continued from previous page)

def __init__(self, tsreader, imgwriter,
agg_func=None,
ts_buffer=1000):

self.agg_func = agg_func
if self.agg_func is None:

try:
self.agg_func = tsreader.agg_ts2img

except AttributeError:
self.agg_func = agg_tsmonthly

self.tsreader = tsreader
self.imgwriter = imgwriter
self.ts_buffer = ts_buffer

def calc(self, **tsaggkw):
"""
does the conversion from time series to images
"""
for gpis, ts in self.tsbulk(**tsaggkw):

self.imgwriter.write_ts(gpis, ts)

def tsbulk(self, gpis=None, **tsaggkw):
"""
iterator over gpi and time series arrays of size self.ts_buffer

Parameters

gpis: iterable, optional

if given these gpis will be used, can be practical
if the gpis are managed by an external class e.g. for parallel
processing

tsaggkw: dict
Keywords to give to the time series aggregation function

Returns

gpi_array: numpy.array

numpy array of gpis in this batch
ts_bulk: dict of numpy arrays

for each variable one numpy array of shape
(len(gpi_array), len(ts_aggregated))

"""
have to use the grid iteration as long as iter_ts only returns
data frame and no time series object including relevant metadata
of the time series
i = 0
gpi_bulk = []
ts_bulk = {}
ts_index = None
if gpis is None:

gpis, _, _, _ = self.tsreader.grid.grid_points()
for gpi in gpis:

gpi_bulk.append(gpi)
ts = self.tsreader.read_ts(gpi)
ts_agg = self.agg_func(ts, **tsaggkw)
for column in ts_agg.columns:

(continues on next page)

24 Chapter 8. resample

repurpose Documentation, Release 0.8

(continued from previous page)

try:
ts_bulk[column].append(ts_agg[column].values)

except KeyError:
ts_bulk[column] = []
ts_bulk[column].append(ts_agg[column].values)

if ts_index is None:
ts_index = ts_agg.index

i += 1
if i >= self.ts_buffer:

for key in ts_bulk:
ts_bulk[key] = np.vstack(ts_bulk[key])

gpi_array = np.hstack(gpi_bulk)
yield gpi_array, ts_bulk
ts_bulk = {}
gpi_bulk = []
i = 0

if i > 0:
for key in ts_bulk:

ts_bulk[key] = np.vstack(ts_bulk[key])
gpi_array = np.hstack(gpi_bulk)
yield gpi_array, ts_bulk

8.2.2 resample

Spatial Resampling

The resample module contains functions to convert gridded data to different spatial resolutions.

8.2.3 License

Copyright (c) 2020, TU Wien, Department of Geodesy and Geoinformation All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of TU Wien, Department of Geodesy and Geoinformation nor the names of its contributors
may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL TU WIEN DEPARTMENT OF GEODESY AND GEOINFORMATION BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

8.2. Contents 25

repurpose Documentation, Release 0.8

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

8.2.4 Contributors

• Christoph Paulik <cpaulik@vandersat.com>

• Wolfgang Preimesberger <wolfgang.preimesberger@geo.tuwien.ac.at>

8.2.5 repurpose

repurpose package

Submodules

repurpose.img2ts module

class repurpose.img2ts.Img2Ts(input_dataset, outputpath, startdate, enddate, input_kwargs={},
input_grid=None, target_grid=None, imgbuffer=100,
variable_rename=None, unlim_chunksize=100, cell-
size_lat=180.0, cellsize_lon=360.0, r_methods=’nn’,
r_weightf=None, r_min_n=1, r_radius=18000, r_neigh=8,
r_fill_values=None, filename_templ=’%04d.nc’, grid-
name=’grid.nc’, global_attr=None, ts_attributes=None,
ts_dtypes=None, time_units=’days since 1858-11-17 00:00:00’,
zlib=True)

Bases: object

class that uses the read_img iterator of the input_data dataset to read all images between startdate and enddate
and saves them in netCDF time series files according to the given netCDF class and the cell structure of the
outputgrid

Parameters

• input_dataset (DatasetImgBase like class instance) – must implement
a daily_images iterator that yields data : dict

dictionary of numpy arrays that hold the image data for each variable of the dataset

timestamp : exact timestamp of the image lon : numpy.array or None

array of longitudes, if None self.grid will be assumed

lat [numpy.array or None] array of latitudes, if None self.grid will be assumed

jd [numpy.array or None] array of observation times in julian days, if None all observations
have the same timestamp

• outputpath (string) – path where to save the time series to

• startdate (date) – date from which the time series should start. Of course images have
to be available from this date onwards.

• enddate (date) – date when the time series should end. Images should be availabe up
until this date

26 Chapter 8. resample

mailto:cpaulik@vandersat.com
mailto:wolfgang.preimesberger@geo.tuwien.ac.at
https://docs.python.org/3.7/library/functions.html#object

repurpose Documentation, Release 0.8

• input_kwargs (dict, optional) – keyword arguments which should be used in the
read_img method of the input_dataset

• input_grid (grid instance as defined in :module:‘pytesmo.grids.grid‘, optional) – the
grid on which input data is stored. If not given then the grid of the input dataset will be used.
If the input dataset has no grid object then resampling to the target_grid is performed.

• target_grid (grid instance as defined in :module:‘pytesmo.grids.grid‘, optional) – the
grid on which the time series will be stored. If not given then the grid of the input dataset
will be used

• imgbuffer (int, optional) – number of days worth of images that should be read
into memory before a time series is written. This parameter should be chosen so that the
memory of your machine is utilized. It depends on the daily data volume of the input dataset

• variable_rename (dict, optional) – if the variables should have other names
than the names that are returned as keys in the dict by the daily_images iterator. A dictionary
can be provided that changes these names for the time series.

• unlim_chunksize (int, optional) – netCDF chunksize for unlimited variables.

• cellsize_lat (float, optional) – if outgrid or input_data.grid are not cell grids
then the cellsize in latitude direction can be specified here. Default is 1 global cell.

• cellsize_lon (float, optional) – if outgrid or input_data.grid are not cell grids
then the cellsize in longitude direction can be specified here. Default is 1 global cell.

• r_methods (string or dict, optional) – resample methods to use if resam-
pling is necessary, either ‘nn’ for nearest neighbour or ‘custom’ for custom weight function.
Can also be a dictionary in which the method is specified for each variable

• r_weightf (function or dict, optional) – if r_methods is custom this func-
tion will be used to calculate the weights depending on distance. This can also be a dict with
a separate weight function for each variable.

• r_min_n (int, optional) – Minimum number of neighbours on the target_grid that
are required for a point to be resampled.

• r_radius (float, optional) – resample radius in which neighbours should be
searched given in meters

• r_neigh (int, optional) – maximum number of neighbours found inside r_radius
to use during resampling. If more are found the r_neigh closest neighbours will be used.

• r_fill_values (number or dict, optional) – if given the resampled output
array will be filled with this value if no valid resampled value could be computed, if not a
masked array will be returned can also be a dict with a fill value for each variable

• filename_templ (string, optional) – filename template must be a string with a
string formatter for the cell number. e.g. ‘%04d.nc’ will translate to the filename ‘0001.nc’
for cell number 1.

• gridname (string, optional) – filename of the grid which will be saved as netCDF

• global_attr (dict, optional) – global attributes for each file

• ts_attributes (dict, optional) – dictionary of attributes that should be set for
the netCDF time series. Can be either a dictionary of attributes that will be set for all
variables in input_data or a dictionary of dictionaries. In the second case the first dictionary
has to have a key for each variable returned by input_data and the second level dictionary
will be the dictionary of attributes for this time series.

8.2. Contents 27

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict

repurpose Documentation, Release 0.8

• ts_dtype (numpy.dtype or dict of numpy.dtypes) – data type to use for the
time series, if it is a dict then a key must exist for each variable returned by input_data.
Default : None, no change from input data

• time_units (string, optional) – units the time axis is given in. Default: “days
since 1858-11-17 00:00:00” which is modified julian date for regular images this can be set
freely since the conversion is done automatically, for images with irregular timestamp this
will be ignored for now

• zlib (boolean, optional) – if True the saved netCDF files will be compressed De-
fault: True

calc()
go through all images and retrieve a stack of them then go through all grid points in cell order and write to
netCDF file

img_bulk()
Yields numpy array of self.const.imgbuffer images, start and enddate until all dates have been read

Returns

• img_stack_dict (dict of numpy.array) – stack of daily images for each variable

• startdate (date) – date of first image in stack

• enddate (date) – date of last image in stack

• datetimestack (np.array) – array of the timestamps of each image

• jd_stack (np.array or None) – if None all observations in an image have the same obser-
vation timestamp. Otherwise it gives the julian date of each observation in img_stack_dict

exception repurpose.img2ts.Img2TsError
Bases: Exception

repurpose.resample module

repurpose.resample.hamming_window(radius, distances)
Hamming window filter.

Parameters

• radius (float32) – Radius of the window.

• distances (numpy.ndarray) – Array with distances.

Returns weights – Distance weights.

Return type numpy.ndarray

repurpose.resample.resample_to_grid(input_data, src_lon, src_lat, target_lon, target_lat,
methods=’nn’, weight_funcs=None, min_neighbours=1,
search_rad=18000, neighbours=8, fill_values=None)

resamples data from dictionary of numpy arrays using pyresample to given grid. Searches for the neighbours
and then resamples the data to the grid given in togrid if at least min_neighbours neighbours are found

Parameters

• input_data (dict of numpy.arrays) –

• src_lon (numpy.array) – longitudes of the input data

• src_lat (numpy.array) – src_latitudes of the input data

28 Chapter 8. resample

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3.7/library/exceptions.html#Exception
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

repurpose Documentation, Release 0.8

• target_lon (numpy.array) – longitudes of the output data

• target_src_lat (numpy.array) – src_latitudes of the output data

• methods (string or dict, optional) – method of spatial averaging. this is
given to pyresample and can be ‘nn’ : nearest neighbour ‘custom’ : custom weight function
has to be supplied in weight_funcs see pyresample documentation for more details can also
be a dictionary with a method for each array in input data dict

• weight_funcs (function or dict of functions, optional) – if method
is ‘custom’ a function like func(distance) has to be given can also be a dictionary with a
function for each array in input data dict

• min_neighbours (int, optional) – if given then only points with at least this num-
ber of neighbours will be resampled Default : 1

• search_rad (float, optional) – search radius in meters of neighbour search De-
fault : 18000

• neighbours (int, optional) – maximum number of neighbours to look for for each
input grid point Default : 8

• fill_values (number or dict, optional) – if given the output array will be
filled with this value if no valid resampled value could be computed, if not a masked array
will be returned can also be a dict with a fill value for each variable

Returns data – resampled data on given grid

Return type dict of numpy.arrays

Raises ValueError : – if empty dataset is resampled

repurpose.resample.resample_to_grid_only_valid_return(input_data, src_lon,
src_lat, target_lon, tar-
get_lat, methods=’nn’,
weight_funcs=None,
min_neighbours=1,
search_rad=18000, neigh-
bours=8, fill_values=None)

resamples data from dictionary of numpy arrays using pyresample to given grid. Searches for the neighbours
and then resamples the data to the grid given in togrid if at least min_neighbours neighbours are found

Parameters

• input_data (dict of numpy.arrays) –

• src_lon (numpy.array) – longitudes of the input data

• src_lat (numpy.array) – src_latitudes of the input data

• target_lon (numpy.array) – longitudes of the output data

• target_src_lat (numpy.array) – src_latitudes of the output data

• methods (string or dict, optional) – method of spatial averaging. this is
given to pyresample and can be ‘nn’ : nearest neighbour ‘custom’ : custom weight function
has to be supplied in weight_funcs see pyresample documentation for more details can also
be a dictionary with a method for each array in input data dict

• weight_funcs (function or dict of functions, optional) – if method
is ‘custom’ a function like func(distance) has to be given can also be a dictionary with a
function for each array in input data dict

8.2. Contents 29

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict

repurpose Documentation, Release 0.8

• min_neighbours (int, optional) – if given then only points with at least this num-
ber of neighbours will be resampled Default : 1

• search_rad (float, optional) – search radius in meters of neighbour search De-
fault : 18000

• neighbours (int, optional) – maximum number of neighbours to look for for each
input grid point Default : 8

• fill_values (number or dict, optional) – if given the output array will be
filled with this value if no valid resampled value could be computed, if not a masked array
will be returned can also be a dict with a fill value for each variable

Returns

• data (dict of numpy.arrays) – resampled data on part of the target grid over which data was
found

• mask (numpy.ndarray) – boolean mask into target grid that specifies where data was resam-
pled

Raises ValueError : – if empty dataset is resampled

repurpose.ts2img module

class repurpose.ts2img.Ts2Img(tsreader, imgwriter, agg_func=None, ts_buffer=1000)
Bases: object

Takes a time series dataset and converts it into an image dataset. A custom aggregate function should be given
otherwise a daily mean will be used

Parameters

• tsreader (object) – object that implements a iter_ts method which iterates over pandas
time series and has a grid attribute that is a pytesmo BasicGrid or CellGrid

• imgwriter (object) – writer object that implements a write_ts method that takes a list
of grid point indices and a 2D array containing the time series data

• agg_func (function) – function that takes a pandas DataFrame and returns an aggre-
gated pandas DataFrame

• ts_buffer (int) – how many time series to read before writing to disk, constrained by
the working memory the process should use.

calc(**tsaggkw)
does the conversion from time series to images

tsbulk(gpis=None, **tsaggkw)
iterator over gpi and time series arrays of size self.ts_buffer

Parameters

• gpis (iterable, optional) – if given these gpis will be used, can be practical if
the gpis are managed by an external class e.g. for parallel processing

• tsaggkw (dict) – Keywords to give to the time series aggregation function

Returns

• gpi_array (numpy.array) – numpy array of gpis in this batch

30 Chapter 8. resample

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#dict

repurpose Documentation, Release 0.8

• ts_bulk (dict of numpy arrays) – for each variable one numpy array of shape
(len(gpi_array), len(ts_aggregated))

repurpose.ts2img.agg_tsmonthly(ts, **kwargs)

Parameters

• ts (pandas.DataFrame) – time series of a point

• kwargs (dict) – any additional keyword arguments that are given to the ts2img object
during initialization

Returns ts_agg – aggregated time series, they all must have the same length otherwise it can not
work each column of this DataFrame will be a layer in the image

Return type pandas.DataFrame

Module contents

8.3 Indices and tables

• genindex

• modindex

• search

8.3. Indices and tables 31

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

repurpose Documentation, Release 0.8

32 Chapter 8. resample

Python Module Index

r
repurpose, 31
repurpose.img2ts, 26
repurpose.resample, 28
repurpose.ts2img, 30

33

repurpose Documentation, Release 0.8

34 Python Module Index

Index

A
agg_tsmonthly() (in module repurpose.ts2img), 31

C
calc() (repurpose.img2ts.Img2Ts method), 28
calc() (repurpose.ts2img.Ts2Img method), 30

H
hamming_window() (in module repurpose.resample),

28

I
Img2Ts (class in repurpose.img2ts), 26
Img2TsError, 28
img_bulk() (repurpose.img2ts.Img2Ts method), 28

R
repurpose (module), 31
repurpose.img2ts (module), 26
repurpose.resample (module), 28
repurpose.ts2img (module), 30
resample_to_grid() (in module repur-

pose.resample), 28
resample_to_grid_only_valid_return() (in

module repurpose.resample), 29

T
Ts2Img (class in repurpose.ts2img), 30
tsbulk() (repurpose.ts2img.Ts2Img method), 30

35

	Citation
	Installation
	Modules
	Alternatives
	Contribute
	Development setup
	Guidelines

	Note
	ts2img
	Introduction
	Possible steps involved in the conversion
	Solution

	resample
	Spatial Resampling
	Contents
	Indices and tables

	Python Module Index
	Index

